
Robust Learning from Bites for Data Mining ?

Andreas Christmann ∗

Vrije Universiteit Brussel, Department of Mathematics, BELGIUM

Ingo Steinwart

Los Alamos National Laboratory, Los Alamos, NM 87545, CCS-3, USA

Mia Hubert

Katholieke Universiteit Leuven, Department of Mathematics, BELGIUM

Abstract

Some methods from statistical machine learning and from robust statistics have
two drawbacks. Firstly, they are computer-intensive such that they can hardly be
used for massive data sets, say with millions of data points. Secondly, robust and
non-parametric confidence intervals for the predictions according to the fitted mod-
els are often unknown. A simple but general method is proposed to overcome these
problems in the context of huge data sets. An implementation of the method is scal-
able to the memory of the computer and can be distributed on several processors to
reduce the computation time. The method offers distribution-free confidence inter-
vals for the median of the predictions. The main focus is on general support vector
machines (SVM) based on minimizing regularized risks. As an example, a combi-
nation of two methods from modern statistical machine learning, i.e. kernel logistic
regression and ε-support vector regression, is used to model a data set from several
insurance companies. The approach can also be helpful to fit robust estimators in
parametric models for huge data sets.
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1 Introduction

Data sets with millions of observations occur nowadays in many areas, e.g.
insurance companies or banks collect many variables to develop tariffs and
scoring methods for credit risk management, respectively. Other examples are
large observational data sets in data mining projects and data from micro-
arrays. Although such big data sets contain a lot of valuable information, the
analysis of such data sets can be cumbersome due to limited computer memory
or computational time problems. Classical parametric assumptions are often
violated for such data sets which probably contain some outliers. We give only
three citations for these facts. Hampel et al. (1986, p. 27f) made the following
comment on data quality and gross errors. ”There are often no or virtually no
gross errors in high-quality data, but 1% to 10% of gross errors in routine data
seem to be more the rule than the exception”. J.W. Tukey, one of the pioneers
of robust statistics, mentioned already in 1960 (cited from Hampel et al. (1986,
p. 21)): ”A tacit hope in ignoring deviations from ideal models was that they
would not matter; that statistical procedures which were optimal under the
strict model would still be approximately optimal under the approximate model.
Unfortunately, it turned out that this hope was often drastically wrong; even
mild deviations often have much larger effects than were anticipated by most
statisticians.” Le Cam (1980, p.478) concluded for data sets with n = 105

to n = 108 data points: ”Thus the asymptotics fail precisely when one would
feel that they are applicable.” Hence, it is no surprise that the data quality
in large data mining projects is often far from being optimal, cf. Hand et al.
(2001) or Hipp et al. (2001), and the application of robust statistical methods
is therefore important in such situations.

Unfortunately, many robust methods proposed in the literature have the fol-
lowing drawbacks which are serious limitations for their application. (a) They
are computer-intensive such that they can hardly be used for massive data sets,
say for several millions of observations with hundreds of explanatory variables.
(b) Robust standard errors and robust confidence intervals for the estimated
parameters or for robust predictions are often unknown. (c) Some statistical
software packages like S-PLUS or R contain state-of-the-art algorithms for
robust statistical methods, but the implemented numerical algorithms usually
require that the whole data set fits into the memory of the computer.

In this paper a simple but quite general method for robust estimation in
the context of huge data sets is proposed. The main goal of the proposal is
to broaden the application of robust general SVM methods for massive data.
The idea is to partition the huge data set S at random into disjoint subsets Sb,
b = 1, . . . , B. Then a robust method is applied to each subset, and the results
are summarized in a robust manner. The proposal yields robust predictions.
If the median is used to aggregate the B single predictions then we also get
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robust and distribution-free confidence intervals.

The rest of the paper is organized as follows. Section 2 gives the proposed
method and Section 3 describes its properties. Section 4 gives some numerical
examples for the case of robust linear regression and kernel logistic regression.
Section 5 contains a summary and compares RLB with competing methods.
All proofs are given in the Appendix.

2 Method

In this section we describe a simple but rather general method for robust esti-
mation for huge data sets. We restrict attention to classification and regression
problems although the method can be used in other fields as well. The pro-
posal has two goals: making robust general SVM methods usable for data sets
which are too large for currently available algorithms due to memory or time
limitations and offering robust and distribution-free confidence intervals based
on the median for the predictions.

In classification and in regression problems one assumes an approximate func-
tional relationship between an explanatory random variable X and a response
random variable Y using n observations (xi, yi) ∈ X × Y ⊂ R

d × R drawn
independently from the same probability distribution P of the pair (X, Y ). In
a non-parametric setting the distribution P is totally unknown. For technical
reasons we assume throughout this work that X and Y are closed or open
subsets of Rd and R, respectively. Hence we can split up P into the marginal
distribution PX and the regular conditional probability P( · |x), x ∈ X , on Y .
For the case of binary classification we have Y = {−1, +1}.

Under the classical signal plus noise assumption Yi|(X = xi) is distributed
as f(xi) + εi, where f is an unknown function and εi are independent and
identically distributed error terms, 1 ≤ i ≤ n. In the parametric setup we have
f(x) = fθ(x) = x′θ, θ ∈ Θ ⊂ Rd. In the non-parametric setup f belongs to
some Hilbert space H of all measurable functions f : (X ,B(X )) → (R,B(R)).
In our case H will be a (typically infinite dimensional) reproducing kernel
Hilbert space (RKHS).

In this paper we always assume that the sample size n is large. The whole data
set is often partitioned at random into two or three disjoint parts for training,
validation, and testing purposes. Instead of modeling the full training data set,
we split the training data set at random into B ≥ 1 parts Sb (called ’bites’)
of approximately the same sub-sample sizes nb ≈ n/B. Then we fit each bite
with the robust method. Finally, we compute a robust location estimator of
the estimators TSb

and summarize the predictions from the B fitted models.
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Definition 1 Let S = ((x1, y1), . . . , (xn, yn)) be a sample of size n from a
probability distribution P on (X × Y ,B(X × Y)). Let TS be the H-valued es-
timator of interest. Consider a random partition of S = S1 ∪ . . . ∪ SB into B
non-empty disjoint subsets, where nb := |Sb| ∈ N, n =

∑B
b=1 nb, b = 1, . . . , B,

B ∈ {1, . . . , n}, B � n. An RLB estimator of type I is defined by

TRLB
S,B = g(TS1 , . . . , TSB

) , (1)

where g : HB → H is a measurable map. An RLB estimator of type II is
given by

TRLB
S,B (x) = g∗(TS1(x), . . . , TSB

(x)) , ∀x ∈ X , (2)

where g∗ : RB → R is a measurable map.

Remarks. (i) An RLB estimator of type I can obviously be used to define an
RLB estimator of type II. (ii) An RLB estimator of type II does not necessarily
define an RLB estimator of type I, because the related function g∗ does not
necessarily correspond to a function g mapping onto the Hilbert space H. (iii)
The class of RLB estimators of type I − and due to part (i) of this remark
the class of RLB estimators of type II − is non-empty, because we obtain
g(TS1 , . . . , TSB

) := 1
B

∑B
b=1 TSb

∈ H for g equal to the mean. �

We will often consider RLB estimators of type I with are convex combinations

TRLB
S,B =

B∑
b=1

cbTSb
(3)

with weights cb ∈ (0, 1) and
∑B

b=1 cb = 1 (cb ≡ 1
B

gives the mean), and RLB
estimators of type II based on the median. The convexity assumption will
assure that the RLB estimator belongs to the set of valid solutions provided
the parameter space is a convex set. This is true e.g. if the parameter space
is equal to Rd in a parametric situation or if the parameter space is a Hilbert
space H for kernel based methods. Of course, L–estimators such as α-trimmed
means, M–, S–, and R–estimators can also be used in the aggregation step.

If B is large enough, say above 15, precision estimates can additionally be
obtained by computing standard deviations of the predictions TRLB

S,B (x) using
the central limit theorem. However, in general we favor a distribution-free
method based on the median. If B is small or if the distribution or the variance
of TRLB

S,B (x) is unknown, one can construct distribution-free confidence intervals
for the median of TRLB

S,B (x) and distribution-free tolerance regions based on
selected order statistics, see David and Nagaraja (2003, Chap. 7). Table 1
lists some values of B, the corresponding pair of order statistics determining
the confidence interval, the lower bound of the actual confidence level which
is 0.5B ∑s

j=r(
B
j ), and the finite sample breakdown point (see Definition 12)

ε∗B = min{r − 1, B − s}/B of the confidence interval. In Section 3 it will be
shown that RLB inherits robustness properties from the original estimator
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and from the estimator used in the aggregation step. The actual confidence
intervals based on the median can be conservative of small choices of B, see
Table 1. If B is not too small, say B > 15, this breakdown point is high
enough for most practical applications. E.g. fix B = 17. Then the 5th and the
13th order statistics give a confidence interval at the level 95% for the median
which is valid for all distributions on (R,B(R)). The breakdown point of this
confidence interval is 4/17 = 0.235 because the values of the four lowest and
the four highest predictions are not used.

1− α B r s lower bound of finite sample
confidence level breakdown point

0.90 8 2 7 0.930 0.125
10 2 9 0.979 0.100
13 4 10 0.908 0.231
18 6 13 0.904 0.278
30 11 20 0.901 0.333
53 21 33 0.902 0.377

104 44 61 0.905 0.413

0.95 9 2 8 0.961 0.111
10 2 9 0.979 0.100
17 5 13 0.951 0.235
37 13 25 0.953 0.324
51 19 33 0.951 0.353
58 22 37 0.952 0.362

101 41 61 0.954 0.396

0.99 10 1 10 0.998 0.000
12 2 11 0.994 0.083
26 7 20 0.991 0.231
39 12 28 0.991 0.282
49 16 34 0.991 0.306

101 38 64 0.991 0.366
Table 1
Selected pairs (r, s) of order statistics for non-parametric confidence intervals at the
(1− α)-level for the median.

3 Properties of RLB

In this section properties of robust learning from bites are investigated. Denote
the estimator based on the whole data set by TS and denote the corresponding
RLB estimator based on B bites by TRLB

S,B . We will assume in this section
that min1≤b≤B nb → ∞, n → ∞. Computational time and memory space are
considered in Section 3.1. RLB for general SVM estimators is investigated in
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Section 3.2, and robustness properties are proved in Section 3.3. In Section
3.4 some arguments are given how to choose the number of bites. All proofs
are given in the appendix.

3.1 General properties

The estimators TSb
, 1 ≤ b ≤ B, from the bites are stochastically independent

because S1, . . . ,SB are disjoint. Denote the number of available CPUs by k
and let kB be the smallest integer which is not smaller than B/k.

Proposition 2 (k CPUs) Assume that the computation time of TS for a
data set with n observations and d explanatory variables is of order O(h(n, d)),
where h is some positive function. Then the computation time of TRLB

S,B with
subsample sizes nb ≈ n/B is approximately of order O(kB · h(n/B, d)).

Proposition 3 (k CPUs) Assume that the estimator TS for a data set with
n observations and d explanatory variables needs memory space and hard disk
space of order O(h1(n, d)) and O(h2(n, d)), respectively, where h1 and h2 are
positive functions. Then the computation of TRLB

S,B for subsample sizes nb ≈
n/B needs approximately memory space and hard disk space of order O(k ·
h1(n/B, d)) and O(k · h2(n/B, d)), respectively.

Proposition 4 (Consistency) Consider an RLB estimator TRLB
S,B of type I

based on a convex combination with cb ∈ (0, 1) and
∑B

b=1 cb = 1. (i) If E(TSb
) =

E(TS) for all b ∈ {1, . . . , B}, then E(TRLB
S,B ) = E(TS). (ii) If TS converges in

probability (or almost sure) to TP for n →∞ and if (n/nb) → B, B fixed, then
TRLB
S,B converges in probability (or almost sure) to TP. (iii) Let cb ≡ 1

B
. Assume

that n
1/2
b (TSb

− TP) converges weakly to a multivariate normal distribution
N(0, Σ), where Σ ∈ Rd×d is positive definite, and that (n/nb) → B, 1 ≤ b ≤ B,
B fixed. Then n1/2(TRLB

S,B − TP) converges weakly to a multivariate normal
distribution N(0, Σ), n →∞.

Proposition 5 (Consistency) Consider an RLB estimator TRLB
S,B of type II

where the median is used in the aggregation step. If TS(x) converges in prob-
ability (or almost sure) to TP(x), x ∈ X , and if limn→∞ (n/nb) ≡ B, B fixed,
then TRLB

S,B (x) converges in probability (or almost sure) to TP(x), x ∈ X .
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3.2 Properties of RLB using the mean for general SVM methods

Now we consider general SVM estimators

fS,λ := arg min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ||f ||2H , (4)

for f where L : Y × [0,∞) → [0,∞) is a convex loss function, H is the re-
producing kernel Hilbert space defined via the kernel k : X × X → R, and
regularizing parameter λ > 0, see Vapnik (1998) and Schölkopf and Smola
(2002). Special cases of such general SVM methods are the support vector
machine: L(y, t) = max{0, 1 − yt}, y ∈ {−1, +1}, t ∈ R, kernel logistic re-
gression: L(y, t) = ln(1 + exp[−yt]), y ∈ {−1, +1}, t ∈ R, and support vector
regression: L(y, t) = max{|y − t| − ε, 0}, y, t ∈ R, where ε > 0 is fixed. The
general SVM estimator fSb,λ(x), x ∈ X , defined as the solution of (4) for bite
Sb is a kernel based estimator and can be written as

fSb,λ(x) =
nb∑
i=1

αi,b k(x, xi), i ∈ Sb, x ∈ X , (5)

where αi,b ∈ R. If αi,b 6= 0, then (xi, yi) is called a support vector (SV). We
denote the set of support vectors in bite Sb by SV (Sb) and its number of
elements by |SV (Sb)|. Obviously, the minimization problem (4) can be inter-
preted as a stochastic approximation of the minimization of the theoretical
regularized risk

fP,λ := arg min
f∈H

EP L(Y, f(X)) + λ‖f‖2
H ∈ H . (6)

Theorem 6 (RLB for general SVMs) Assume that the estimator fS,λ is
a general SVM estimator defined by (4) for the whole data set with n =

∑B
b=1 nb

observations, B fixed. Consider an RLB estimator of type I based on a convex
combination with cb ∈ (0, 1) and

∑B
b=1 cb = 1. Then the RLB estimator is itself

a kernel based estimator and can be written as

fRLB
S,B,λ(x) =

n∑
i=1

αi,RLB k(x, xi) (7)

=
∑

i∈SV (S1)∪ ...∪SV (SB)

αi,RLB k(x, xi), x ∈ X , (8)

where αi,RLB =
∑B

b=1 cb αi,b , i = 1, . . . , n.

If all support vectors are different, we have αi,RLB = cb αi,b in (8).

Let us now investigate the number of support vectors in more detail for the
case of pattern recognition, i.e. Y = {−1, +1}. For part (ii) of Theorem 10
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we need some notations. Let X0 := {x ∈ X ; P(Y = 1|X = x) = 1/2} and
Xcont := {x ∈ X ; PX({x} = 0)}.

Definition 7 Let H be a Hilbert space, F : H → R∪{∞} be a convex function
and w ∈ H with F (w) 6= ∞. Then the subdifferential of F at w is defined
by

∂F (w) :=
{
w∗ ∈ H : 〈w∗, v − w〉 ≤ F (v)− F (w) for all v ∈ H

}
.

Furthermore, if L is a convex loss function, we denote the subdifferential of L
with respect to the second variable by ∂2L.

Further, define the set-valued function

F ∗
L(α) :=

{
t ∈ R; [αL(1, t)+(1−α)L(−1, t)] = min

s∈R
[αL(1, s)+(1−α)L(−1, s)]

}
,

α ∈ [0, 1], ∂f(A) := ∪a∈A∂f(a), the set

S =
{
(x, y) ∈ Xcont × Y ; 0 /∈ ∂2L(y, F ∗

L(P(Y = 1|X = x))) ∩R
}

,

and the quantity

SL,P =

P(S) if 0 /∈ ∂2L(1, F ∗
L(0.5)) ∩ ∂2L(−1, F ∗

L(0.5))

P(S) + 1
2
PX (X0 ∩ Xcont) else,

see Steinwart (2003, p.1082). A loss function is called classification calibrated
if for every α ∈ [0, 1] we have F ∗

L(α) ⊂ [−∞, 0) if α < 1/2, and F ∗
L(α) ⊂ (0,∞]

if α > 1/2. Such loss functions were called admissible by Steinwart (2003), but
we think that the notion of classification calibrated is more precise. For more
information on this and related concepts we refer to Steinwart (2005b) and
Bartlett et al. (2006). We also need the notion of a universal kernel proposed
by Steinwart (2001) to describe the richness of the RKHS H. We refer to
Steinwart et al. (2006) for some more general notions and related results.

Definition 8 Let X ⊂ Rd be compact and k : X × X → R be a continuous
kernel with reproducing kernel Hilbert space H. Then k is universal if H is
dense in the space of continuous functions C(X ) equipped with ‖ . ‖∞, i.e. for
every continuous function g : X → R and all ε > 0 there exists an f ∈ H with
‖ f − g ‖∞ ≤ ε.

Consider a binary classification problem, i.e. Y = {−1, +1}. The misclassifi-
cation risk of a measurable function f : X → R is defined by

RP(f) := P
(
{(x, y) ∈ X × Y ; signf(x) 6= y}

)
,
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where sign(0) := 1. The Bayes risk of P is the smallest achievable misclassifi-
cation risk, i.e.

RP := inf
{
RP(f); f : X → R measurable

}
.

Steinwart (2003, p.1083) proved the following relation between SL,P and RP.

Proposition 9 Consider a binary classification problem, i.e. Y = {−1, +1}.
Let L be a classification calibrated and convex loss function and P be a Borel
probability measure on X × Y. Then we have

SL,P ≥ inf
f :X→R measurable

{
P ((x, y) ∈ Xcont × Y with f(x) 6= y)

}
. (9)

In particular, SL,P ≥ RP holds if Xcont = X .

Now we can formulate our result on the number of support vectors.

Theorem 10 (Number of support vectors) Consider an RLB estimator
of type I defined by (3). Assume that the assumptions of Theorem 6 are valid.
(i) The number of support vectors of the RLB estimator is given by

|{αi,RLB 6= 0; i = 1, . . . , n}| = |{SV (S1) ∪ . . . ∪ SV (SB)}| . (10)

(ii) Consider a binary classification problem, i.e. Y = {−1, +1}. Let B be
fixed, and consider n := B · nb → ∞. Let L be a classification calibrated and
convex loss function, k be a universal kernel and (λnb

) be a sequence of positive
regularization parameters with λnb

→ 0 and nbλ
2
nb

/|Lλnb
|21 → ∞, if nb → ∞.

Then for all Borel probability measures P on (X ×Y ,B(X ×Y)) and all ε > 0
the RLB-classifier based on (4) with respect to k, L, (λnb

), and B satisfies

Pr∗n
(
S1 ∪ . . . ∪ SB ∈ (X × Y)n;

1

n
|SV(fRLB

S,B,(λnb
))| ≥ SL,P − ε

)
→ 1 . (11)

Here Pr∗n denotes the outer probability measure of Pn in order to avoid mea-
surability considerations.

The result given in (11) has the following interpretation: with probability
tending to 1 if the total sample size n = Bnb converges to ∞, but B is fixed,
the fraction of support vectors of the kernel based RLB estimator fRLB

S,B,(λnb
)(x)

in a binary pattern recognition problem is essentially greater than the Bayes
risk, because (11) is valid for all ε > 0 and SL,P ≥ RP whenever Xcont = X ,
see Proposition 9.

Part (ii) of Theorem 10 gives for the RLB estimator the same asymptotical
bound for the number of support vectors then Steinwart (2003) for B = 1 who
also gave sharper bounds under different conditions.
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Now we investigate conditions to guarantee that RLB estimators using general
SVM estimators are L−risk consistent, i.e. that such RLB estimators are able
to learn. If P is a probability distribution on X ×Y , the L-risk of a measurable
map f : X → R with respect to P is defined by

RL,P(f) :=
∫

L(Y, f(X)) dP =
∫

L(y, f(x)) P(dy|x) PX(dx).

The above integral is always defined since L is non-negative and continuous,
although it may be infinite. Consider a general SVM estimator fS,λ defined by
(4) for the whole data set S. The estimator fS,λn is called L-risk consistent, if

RL,P(fS,λn) → R∗
L,P := inf

{
RL,P(f) ; f : X → R measurable

}
(12)

holds in probability for n → ∞ for suitable chosen positive regularization
sequences (λn)n∈N. Of course, such convergence can only hold if the used
RKHS is rich enough, e.g. if H is universal.

Several authors have given conditions to guarantee that general SVM esti-
mators are L−risk consistent, cf. Steinwart (2002, 2005a), Zhang (2004), and
Christmann and Steinwart (2005). If fS,λn is L-risk consistent, B ≥ 1 fixed,
and limn→∞ min1≤b≤B nb = ∞, we obtain by Slutzky’s theorem for an RLB
estimator of type I based on a convex combination with weights cb ∈ (0, 1)
and

∑B
b=1 cb = 1 that

B∑
b=1

cbRL,P(fSb,λnb
) → R∗

L,P (13)

in probability for n → ∞. The next result gives L-risk consistency of RLB
estimators of type I using a convex combination.

Theorem 11 (L−risk consistency) Let fS,λn be an L-risk consistent gen-
eral SVM estimator based on (4) with a convex loss function and λn > 0.
Then the RLB estimator of type I defined by fRLB

S,B,(λnb
) =

∑B
b=1 cbfSb,λnb

with

cb ∈ (0, 1) and
∑B

b=1 cb = 1 is L-risk consistent, i.e.

RL,P

(
B∑

b=1

cb fSb,λnb

)
−→P R∗

L,P , n →∞ . (14)

3.3 Robustness properties of RLB

Now we derive results which show that certain robustness properties are in-
herited from the original estimator TS to the RLB estimator. We will restrict
attention to two robustness approaches. The finite sample breakdown point
proposed by Donoho and Huber (1983) measures the worst case behavior of a
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statistical estimator. We use the replacement version of this breakdown point,
see Hampel et al. (1986, p.98). The influence function proposed by Hampel
(1968, 1974) measures the impact on the estimation due to an infinitesimal
small contamination of the distribution P in direction of a Dirac-distribution.

Definition 12 (Finite-sample breakdown point) Let Sn = {(xi, yi), i =
1, . . . , n} be a data set with values in X × Y. The finite-sample breakdown
point of an estimator TSn is defined by

ε∗n(TSn) = max
{

m

n
; Bias(m; TSn) is finite

}
, (15)

where
Bias(m; TSn) = sup

S′
n

‖ TS′
n
− TSn ‖ (16)

and the supremum is over all possible samples S ′n that can be obtained by
replacing any m of the original data points by arbitrary values in X × Y.

Theorem 13 (Finite-sample breakdown point of RLB) Consider RLB
with B bites where nb ≡ n/B. Denote the finite sample breakdown point of the
estimator TSb

for bite b by ε∗nb
(TSb

) and denote the finite sample breakdown
point of the estimator µ̂ = µ̂(TS1 , . . . , TSB

) in the aggregation step by ε∗B(µ̂).
Then the finite sample breakdown point of the RLB estimator is given by

ε∗RLB,S,B =
1

n

(
k∑

b=1

(
nbε

∗
nb

(TSb
) + 1

)
(b:B)

− 1

)
, (17)

where k is the smallest integer not less than Bε∗B(µ̂) + 1 and z(1:B) ≤ . . . ≤
z(B:B) denote the ordered values of {z1, . . . , zB}.

Remark. If all values nbε
∗
nb

(TSb
) are equal, we obtain

ε∗RLB,S,B =

(
nbε

∗
nb

(TSb
) + 1

)
dBε∗B(µ̂) + 1e − 1

n
≥ ε∗nb

(TSb
)ε∗B(µ̂) . (18)

If the mean or any other estimator with ε∗B(µ̂) = 0 is used in this situation,
then the RLB has a finite sample breakdown point of ε∗nb

(TSb
)/B → 0, if

B →∞. Hence B should not be too large. �

Example 14 (Univariate location model) Consider the univariate loca-
tion problem, where xi ≡ 1 and yi ∈ R, i = 1, . . . , n, n = 55. Assume
that yi 6= yj for i 6= j. The finite sample breakdown point of the median
is b(n − 1)/2c/n = 27/55 ≈ 0.491. The mean has a finite sample break-
down point of 0. Let us investigate the robustness of RLB with B = 5
and nb = 11, b = 1, . . . , B. (a) If the median is used as the location esti-
mator in each bite and if the median is used in the aggregation step, then
ε∗RLB,Sn,B = 17/55 ≈ 0.309. This value is reasonably high, but lower than the
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finite sample breakdown point of the median for the whole data set. Note that
in a fortunate situation the impact of up to (2×11+5×3)/55 = 0.672 extreme
data points (e.g., all equal to +∞) is still bounded for the RLB estimator in
this setup: modify all data points in Bε∗B(µ̂) = 2 bites and up to nb ε∗nb

(TSb
) = 5

data points in the remaining B(1− ε∗B(µ̂)) = 3 bites. This is no contradiction
because the breakdown point measures the worst case behavior. (b) If the me-
dian is used as the location estimator in each bite and if the mean is used in
the aggregation step, then we obtain ε∗RLB,Sn,B = ε∗nb

(TSb
)/B = 5/55 ≈ 0.09.

(c) If the mean is used as the location estimator in each bite and also in the
aggregation step we have ε∗RLB,Sn,B = 0. �

Now we investigate the influence function of an RLB estimator of type I. We
assume the existence of a map T which assigns to every distribution P on a
given set Z an element T (P) of a given Banach space E such that our RLB
estimator for a data set S = S1 ∪ . . . ∪ SB has the representation

TRLB
S,B =

B∑
b=1

cbT (PSb
). (19)

Here PSb
denotes the empirical distribution of the data points in bite Sb,

b = 1, . . . , B. We have T (P) = θ ∈ E = Rd for parametric models and E = H
and T (P) = fP,λ for general SVM methods defined by (4).

Definition 15 (Influence function) The influence function of T at a point
z for a distribution P is the special Gâteaux derivative (if it exists) in direction
of the Dirac distribution δz, i.e.

IF(z; T, P) = lim
ε↓0

T
(
(1− ε)P + εδz

)
− T (P)

ε
. (20)

The influence function measures the impact of an infinitesimal small amount
of contamination of the probability distribution P in direction of δz on the
theoretical quantity of interest T (P). Statistical methods with a bounded in-
fluence function are desirable. Many robust estimators have a bounded influ-
ence function, see e.g. Hampel et al. (1986, Chapter 6.3) for M -estimators
in multivariate location and scale models, and Coakley and Hettmansperger
(1993) and Croux et al. (2003) for estimators in linear regression models.

Theorem 16 (Influence function of RLB) Assume that the original esti-
mator TS has the representation T (Pn), where Pn is the empirical distribution
of the sample S, and that the influence function of the map T (P) exists for
the probability distribution P. Then the RLB estimator of type I defined by (3)
with a fixed number B of bites and n/nb ≡ B exists and equals the influence
function of T (P).
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The influence function of many general SVM methods exists for the case of
classification and regression, see Christmann and Steinwart (2004, 2005). Fur-
ther the influence function of such methods is bounded if a loss function L
with bounded first derivative and a bounded and universal kernel k are used.
An example is kernel logistic regression in combination with a Gaussian radial
basis function kernel k(x, x′) = exp(−γ||x−x′||2), x, x′ ∈ X , where γ ∈ (0,∞).
Some properties of SVM methods for finite sample sizes are given in Christ-
mann et al. (2002) and Christmann (2004).

3.4 Determination of the number B of bites

From the results given in Sections 3.1 to 3.3 it is obvious, that the number
of bites has some impact on the statistical behavior of the RLB estimator
and also on the computation time and the necessary computer memory. An
optimal choice of the number B of bites will in general depend on P, but some
arguments can be given how to determine B in an appropriate manner.

One should take the sample size n, the computer resources (number of CPUs,
RAM) and the acceptable computation time into account. The quantity B
should be much lower than n, because otherwise there is not much hope to
obtain useful estimators from the bites and because the finite sample break-
down point is generally decreasing with increasing values of B. Further, B
should depend on the dimensionality d of the explanatory vectors xi ∈ X .
E.g. a rule of thump for linear regression is that n/d should be at least 5.
Hence we propose that nb/d ≥ 5 for all bites for linear regression. Because the
function f is completely unknown in nonparametric regression assumptions
on the complexity of f are crucial. The sample size nb for each bite should
converge to infinity, if n →∞, to obtain consistency of RLB. The results from
some numerical experiments not given here can be summarized as follows. (i)
If B is too large, the computational overhead and the danger of bad fits in-
crease because nb is too small to provide reasonable estimators. (ii) A major
decrease in computation time and memory saving is often already present, if
B is chosen in a way such that each bite fits nicely into the computer (CPU,
RAM). Nowadays robust estimators can often be computed for sample sizes
up to nb = 104 or nb = 105. In this case B = dn/nbe can be a reasonable choice.
(iii) If distribution-free confidence intervals at the (1−α) level for the median
of the predictions, i.e. TRLB

S,B (x) = median1≤b≤B TSb
(x), x ∈ X , are needed, one

should take into account that the actual confidence level of such confidence
intervals based on order statistics can be conservative, i.e. higher than the
specified level, for some pairs (r, s) of order statistics due to the discreteness
of order statistics. (iv) In our examples B = 17 gave good results.
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4 Numerical results

In this section we give a few numerical results for RLB. We apply our proposal
for a parametric and for a non-parametric method, namely robust linear regres-
sion by MM-estimation (Yohai, 1987) and kernel logistic regression (Wahba,
1999). The computations are done on a PC with a 2.8 GHz processor.

Let us begin with robust estimation in linear regression. We simulated data
sets with n = Bnb observations (xi, yi) ∈ R

4 in the following way, where
xi = (xi,1, xi,2, xi,3). We consider independent and identically distributed ran-
dom variables (Xi,1, Xi,2, Xi,3, Yi), i = 1, . . . , n, each with a probability distri-
bution from a mixture model P = 0.8P1 + 0.2P2. Under P1 the explana-
tory variables Xi,1, Xi,2, and Xi,3 are independent and have a Student t-
distribution with 3 degrees of freedom and location parameter 0, whereas the
response variable Yi|(xi,1, xi,2, xi,3) has a Student t-distribution with 3 degrees
of freedom and location parameter f(xi) = xT

i θ, where xT
i = (0, xi,1, xi,2, xi,3)

and θ = (0, 1, 1, 1)T . Hence EP1Xi,j = 0 and EP1 [Yi|(xi,1, xi,2, xi,3)] = f(xi),
1 ≤ i ≤ n. Under P2 the explanatory variables Xi,1, Xi,2, and Xi,3 are indepen-
dent and identically distributed each with a Dirac distribution in the point
50, whereas the response variable Yi|(xi,1, xi,2, xi,3) has a Dirac distribution
in the point 1000, i.e. P2((Xi,1, Xi,2, Xi,3, Yi) = (50, 50, 50, 1000)) = 1. Ob-
viously the distribution P produces approximately 20% bad leverage points
in (50, 50, 50, 1000) with respect to the linear regression model P1. Table 2
shows the computation times in seconds, the bias of an MM-estimator com-
puted for the whole data set and of the RLB estimator for B = 17, and the
width of the componentwise distribution-free confidence intervals based on the
median at the 95%-level for different sub-sample sizes nb. The MM-estimates
were computed with the function rlm from the R-library MASS (Venables and
Ripley, 2002). This function first computes an S-estimate as a starting point
which has an approximate finite sample breakdown point of 0.5. Then an
M-estimator with Tukey’s biweight and fixed scale is iteratively computed
using this starting value that will inherit this breakdown point from the S-
estimator. The time-consuming phase of MM-estimators is the computation
of the highly robust starting value. The confidence intervals for the original
MM-estimator were computed using the asymptotical normality assumption.
The distribution-free confidence intervals for the RLB estimator were based
on the 5th and the 13th order statistics. Because the bias terms and the width
of the confidence intervals are very small due to the large sample size, the
values in Table 2 are multiplied by 103.

In the considered situations RLB gave good results: the bias values are small,
which shows that the RLB method indeed gave robust estimates, and the
width of the confidence intervals is of similar size as for the original MM-
estimator. It is not surprising that the distribution-free confidence intervals
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for the RLB estimator are somewhat larger (often by a factor between 1.1
and 1.2) than the confidence intervals of the MM-estimator based on the
assumption of asymptotic normality. If the total sample size n is not too big,
such that the MM-estimates can be computed with rlm only using the RAM
of the computer, RLB only saves a little bit of computation time. However,
using RLB one can fit for much larger data sets for which the algorithm
used by rlm would need much more RAM than the available PC has (2 GB),
such that the computation of the MM-estimates for the whole data set was
impossible. In contrast to that, the computation time of RLB increased only
approximately linearly in nb, and the used RAM was low in contrast to the
used RAM to compute the MM-estimates for the whole data set. No memory
problems occurred for RLB with n = 3.4 million and B = 17.

nb = 10, 000 nb = 100, 000 nb = 200, 000

RLB MM RLB MM RLB MM

seconds 33.89 44.64 348.78 460.95 684.61 −
Bias(θ̂0) (×1000) 2.32 0.35 0.17 0.17 0.31 −

width of c.i. (×1000) 17.42 15.36 5.15 4.87 5.27 −
Bias(θ̂1) (×1000) 1.21 1.18 −2.02 −1.44 0.46 −

width of c.i. (×1000) 8.78 7.39 3.29 2.31 1.39 −
Bias(θ̂2) (×1000) 0.62 0.23 0.09 −0.32 0.90 −

width of c.i. (×1000) 8.06 7.38 2.32 2.30 2.82 −
Bias(θ̂3) (×1000) −1.60 −2.22 0.31 −0.16 −0.54 −

width of c.i. (×1000) 8.72 7.36 5.19 2.28 1.86 −
Table 2
Results for robust linear regression with MM-estimator and RLB with B = 17. The
computation of the MM-estimates for the whole data set with n = 17·200, 000 = 3.4
million data points was not possible due to memory problems.

Now we apply the RLB approach to kernel logistic regression (KLR), see
(Wahba, 1999). KLR is a flexible method for classification problems and pro-
vides also estimates for the conditional probabilities P(Y = 1|X = x), x ∈ X ,
which is not true for the support vector machine, see Bartlett and Tewari
(2004). Christmann and Steinwart (2004) showed KLR has good robustness
properties, e.g. a bounded influence function. All computations are done with
the program myKLR (Rüping, 2003) which is an implementation in C++ of
the algorithm proposed by Keerthi et al. (2004) to solve the dual problem.
We choose KLR for two reasons. Firstly, the computation of KLR needs much
more time than for the support vector machine because the latter solves a
quadratic instead of a convex program in dual space. Therefore, the need for
computational improvements is greater for KLR than say for the SVM, and
the potential gains of RLB can be more important. Secondly, the number of
support vectors of KLR is approximately equal to n which slows down the
computation of predictions.
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The simulated data sets contain n data points (xi, yi) ∈ R8 × {−1, +1} sim-
ulated in the following way. All 8 components of xi = (xi,1, . . . , xi,8) are sim-
ulated independently from a uniform distribution on (0, 1). The responses
yi are simulated independently from a logistic regression model according to
P(Yi = +1|Xi = xi) = 1/(1 + exp[−f(xi)]). We define

f(xi) =
8∑

j=1

xi,j − xi,1xi,2 − xi,2xi,3 − xi,4xi,5 − xi,1xi,6xi,7 ,

such that there are 8 main effects and 4 interaction terms. The numerical
results of fitting kernel logistic regression to such data sets is given in Table
3. If the whole data set has n = 105 observations, approximately 10 hours
were needed to compute KLR. If RLB with B = 10 bits is used each with a
sub-sample size of nb = 104, one needs approximately 10 × 93.3 seconds, i.e.
16 minutes, if 1 GB of kernel cache is available. This is a reduction by a factor
of 38. If there are 5 CPUs available and each processor can use up to 200 MB
kernel cache, RLB with B = 10 will need approximately 11 minutes which is
a reduction by a factor of 55.

sample size CPU time used cache available cache
n in MB in MB

2,000 4 sec 33 200
5,000 25 sec 198 200

10,000 5 min, 21 sec 200 200
10,000 1 min, 33 sec 787 1,000
20,000 24 min, 11 sec 1,000 1,000

100,000 9 h, 56 min, 46 sec 1,000 1,000
Table 3
Computation times for kernel logistic regression using myKLR.

Christmann (2005) described a strategy to construct insurance tariffs for a
data set from 15 German motor vehicle insurance companies. The whole data
contains data from around 4.6 million customers with dozens of explanatory
variables. A direct use of kernel logistic regression with myKLR was unfeasable
due to the computation time, see Table 3. Although a strategy was used to
reduce the computational effort by exploiting characteristic features of such
data sets, RLB can substantially reduce the computation time. Fitting the
model to the whole data set would need more than six months on a PC with
2.8 GHz CPU, whereas RLB with B = 17 using 2 CPUs was able to provide a
good fit within 4 days, which is a reduction by a factor of 45. If RLB is allowed
to use 8 CPUs one expects that the computation can be done in approximately
one day. This turned out to be true when we used RLB on a LINUX cluster.
RLB is therefore quite useful for kernel logistic regression for large data sets.
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5 Discussion and related work

In this paper robust learning from bites (RLB) was proposed to broaden the
usability of computer-intensive robust methods in the case of large data sets
which occur nowadays often in data mining projects. RLB is especially de-
signed for situations under which the original robust method cannot be used
due to excessive computation time or due to memory space problems. In these
situations RLB offers robust estimates and additionally robust confidence in-
tervals. RLB estimators will in general not fulfill certain optimality criteria,
but the method has four nice properties. Scalability: the number B of bites
can be chosen such that the algorithm used to fit the bites needs less memory
than the computer offers. Performance: the computational steps for different
bites can easily be distributed on several processors because they are inde-
pendent and use disjoint parts of the data set. Robustness: we considered the
finite sample breakdown point and the influence function. These properties are
inherited from the original robust estimator computed for each bite and from
the location estimator used to aggregate the results from the bites. Confidence
intervals: no complex formulae are needed to obtain distribution-free (com-
ponentwise) confidence intervals for the estimates or for the predictions if the
median is used in the aggregation step because the estimators computed from
the B bites are independent and identically distributed. Such confidence in-
tervals for the predictions are especially interesting for general SVM methods
(e.g. support vector machines and kernel logistic regression), because such
methods have nice properties but finite sample confidence intervals for the
predictions based on applying such methods once for the whole data set are
typically unknown.

Some good robust estimators are not n−1/2-consistent and have a complicated
non-normal limiting distribution, see e.g. Rousseeuw (1984), Davies (1990),
Kim and Pollard (1990), Rousseeuw and Hubert (1999), Bai and He (1999),
Van Aelst et al. (2002), and Zuo and Cui (2005). Then RLB can be useful
if distribution-free confidence intervals for the median of the predictions are
needed for large data sets.

Recently Croux et al. (2003) proposed estimators with a bounded influence
function in a linear regression model to obtain robust standard errors and
robust estimators for the covariance matrix of the regression parameters. We
like to mention that it is possible to use RLB also for these purposes, if the
original estimator has the desired properties, say asymptotic normality and
a positive breakdown point or a bounded influence function, and if the data
set is large. This follows for a large class of RLB estimators of type I from
Proposition 4, Theorem 13, and Theorem 16.

We like to mention that it is possible to use RLB also for these purposes, if
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the original estimator has the desired robustness properties and if the data
set is large. E.g. consider a consistent and robust estimator for the covariance
matrix. Then the corresponding RLB estimator inherits consistency and ro-
bustness from the original estimator, see Propositions 4 and 5 and Theorems
13 and 16, but the computation of RLB will be faster than for the original
method for large data sets due to Proposition 2.

The subsampling approach used by RLB has connections to several other
methods. One example is the remedian proposed by Rousseeuw and Bassett
(1990) for univariate location estimation. The remedian with base B computes
medians of groups of nb observations, and then the medians of these medians
etc., until only a single estimate remains. The remedian needs only O(log(n))
total storage for fixed B which makes it especially useful for robust estimation
in large data bases, for real-time engineering applications in which the data
are not present at the same time and perhaps not stored, and for resistant
aggregation of curves. As one referee pointed out Balakrishnan and Madigan
(2006, p.20f) use a sequential method called streaming to build sparse gener-
alized linear models for large data sets, but the application of this approach to
kernel based methods seems to be open research. It is not yet known whether
the streaming method offers the same robustness properties than RLB.

RLB has also similarities to Rvote proposed by Breiman (1999), DRvote with
classification trees using majority voting proposed by Chawla et al. (2004), and
with stochastic gradient boosting and greedy function approximation (Fried-
man, 2001, 2002) which are implemented in the software TreeNet. TreeNet is
often able to offer a model with high predictive power. The interpretation of
the results can be difficult because a model determined by TreeNet consists
typically of more than hundred small trees each with two to eight terminal
nodes. As one referee pointed out the computation of trees is fast, trees seem
to have good robustness properties, and the combination of MART and ran-
dom forests is often successful in data mining. However, mathematical proofs
that these methods share the same robustness properties and the L−risk con-
sistency with RLB are not yet available to our knowledge.

There exist also relationships between RLB, cross validation, and robust boot-
strapping methods described e.g. by Amado and Pires (2004), Salibian-Barrera
et al. (2005), and Willems and Van Aelst (2005). However, cross validation
and robust bootstrapping of computer-intensive methods for huge data sets is
not always a simple task due to computation time and memory limitations of
the computer. That was one motivation for the present work.

The focus of the present paper was on robustness aspects and the compu-
tation of robust distribution-free confidence intervals for the median of the
predictions even for very large data sets. Such confidence intervals are often
a problem for robust estimators and general SVM methods based on Vap-
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nik’s convex risk minimization principle. These topics were not covered in
the papers mentioned above. RLB has also some similarity to the algorithms
FAST-LTS and FAST-MCD developed by Rousseeuw and Van Driessen (1999,
2000) for robust estimation in linear regression or multivariate location and
scatter models for large data sets. FAST-LTS and FAST-MCD split the data
set into sub-samples, optimize the objective function in each sub-sample, and
use these solutions as starting values to optimize the objective function for
the whole data set. This is in contrast to RLB which aggregates estimation
results from the bites to obtain robust confidence intervals.

A Appendix

The appendix contains the proofs for the results given in Section 3.

Proof of Proposition 2. Obvious. �

Proof of Proposition 3. Obvious. �

Proof of Proposition 4. (i) follows from the linearity of the expectation
operator. (ii) and (iii) follow from Slutzky’s theorem. �

Proof of Proposition 5. By construction of RLB the bites are disjoint and
the estimators from the bites are independent. Assume that the original esti-
mator TS is consistent in probability for TP. We have for all ε > 0 that

P (|medianb=1,...,B TSb
(x)− TP(x)| < ε)

≥P (|TSb
(x)− TP(x)| < ε for all b = 1, . . . , B)

=
B∏

b=1

P (|TSb
(x)− TP(x)| < ε) → 1, n →∞ , x ∈ X ,

because B is fixed and limn→∞ (n/nb) = B. Now, assume that the original
estimator TS is strongly consistent to TP. Then we obtain analogously:

P
(

lim
n→∞

medianb=1,...,B TSb
(x) = TP(x)

)
≥

B∏
b=1

P
(

lim
nb→∞

TSb
(x) = TP(x)

)
= 1. �

Proof of Theorem 6. By assumption each bite Sb is fitted with a general
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SVM estimator having the representation

fSb,λ(x) =
nb∑
i=1

αi,b k(x, xi), i ∈ Sb , b = 1, . . . , B, xi ∈ X .

Because the bites Sb, b = 1, . . . , B, are disjoint, the RLB estimator using the
mean in the aggregation step is given by

fRLB
S,B,λ(x) =

B∑
b=1

cb

nb∑
i=1

αi,b k(x, xi) =
n∑

i=1

B∑
b=1

cb αi,b k(x, xi), x ∈ X .

The formula (8) follows immediately. �

Proof of Theorem 10. (i) follows from (8). (ii) Steinwart (2003, Th.9) proved

Pr∗n (S ∈ (X × Y)n; |SV(fS,λn)| ≥ (SL,P − ε)n) → 1 , n →∞ . (A.1)

Denote the outer probability measure of the product measure Pb,nb by Pr∗b,nb .
The bites Sb, b = 1, . . . , B, are independent and identically distributed by
construction of RLB. Using (A.1) and n ≡ Bnb we obtain

Pr∗n
(
S ∈ (X × Y)n; |SV(fRLB

S,B,(λnb
))| ≥ (SL,P − ε)n

)
= Pr∗n

(
S1 ∪ . . . ∪ SB ∈ (X × Y)n; |SV(fSb,λnb

)| ≥
B∑

b=1

(SL,P − ε)nb

)

≥Pr∗n
(
∀ Sb ∈ (X × Y)nb , b = 1, . . . , B ; |SV(fSb,λnb

)| ≥ (SL,P − ε)nb

)
=

B∏
b=1

Pr∗b,nb

(
Sb ∈ (X × Y)nb ; |SV(fSb,λnb

)| ≥ (SL,P − ε)nb

)
→ 1 , n →∞. �

Proof of Theorem 11. Note that fRLB
S,B,(λnb

) of type I is a convex combination

of fSb,λnb
, b = 1, . . . , B, due to (3). We obtain for limn→∞ min1≤b≤B nb = ∞:

0≤
∫

L

(
Y,

B∑
b=1

cbfSb,λnb
(X)

)
dP−R∗

L,P

≤
∫ B∑

b=1

cbL
(
Y, fSb,λnb

(X)
)

dP−R∗
L,P (A.2)

=
B∑

b=1

cb

[∫
L
(
Y, fSb,λnb

(X)
)

dP−R∗
L,P

]
−→P 0, (A.3)
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Here we used the convexity of L in (A.2) and the L-risk consistency of the
original estimator in (A.3). �

Proof of Theorem 13. The minimum number of points needed to modify
TSb

in bite b such that the bias in (16) is infinite is given by nb · ε∗nb
(TSb

) + 1,
b = 1, . . . , B. The RLB estimator breaks down if at least Bε∗B(µ̂) + 1 of the
estimators TS1 , . . ., TSB

break down. Hence, we can modify (nb · ε∗nb
(TSb

) +
1)(Bε∗B(µ̂) + 1)− 1 data points in an arbitrary way without obtaining an in-
finite bias. This gives the assertion. �

Proof of Theorem 16. Let z = (x, y) ∈ X × Y and P be a probability
distribution on (X ×Y ,B(X ×Y)). By assumption the RLB estimator fulfills
(19) and the influence function IF(z; T, P) exists. It follows

IF(z; TRLB
B , P) = lim

ε↓0

TRLB
B

(
(1− ε)P + εδz

)
− TRLB

B (P)

ε

= lim
ε↓0

∑B
b=1 cbT

(
(1− ε)P + εδz

)
−∑B

b=1 cbT (P)

ε

=
B∑

b=1

cb lim
ε↓0

T
(
(1− ε)P + εδz

)
− T (P)

ε
= IF(z; T, P). �
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